1,389 research outputs found

    On Sparse Discretization for Graphical Games

    Full text link
    This short paper concerns discretization schemes for representing and computing approximate Nash equilibria, with emphasis on graphical games, but briefly touching on normal-form and poly-matrix games. The main technical contribution is a representation theorem that informally states that to account for every exact Nash equilibrium using a nearby approximate Nash equilibrium on a grid over mixed strategies, a uniform discretization size linear on the inverse of the approximation quality and natural game-representation parameters suffices. For graphical games, under natural conditions, the discretization is logarithmic in the game-representation size, a substantial improvement over the linear dependency previously required. The paper has five other objectives: (1) given the venue, to highlight the important, but often ignored, role that work on constraint networks in AI has in simplifying the derivation and analysis of algorithms for computing approximate Nash equilibria; (2) to summarize the state-of-the-art on computing approximate Nash equilibria, with emphasis on relevance to graphical games; (3) to help clarify the distinction between sparse-discretization and sparse-support techniques; (4) to illustrate and advocate for the deliberate mathematical simplicity of the formal proof of the representation theorem; and (5) to list and discuss important open problems, emphasizing graphical-game generalizations, which the AI community is most suitable to solve.Comment: 30 pages. Original research note drafted in Dec. 2002 and posted online Spring'03 (http://www.cis.upenn. edu/~mkearns/teaching/cgt/revised_approx_bnd.pdf) as part of a course on computational game theory taught by Prof. Michael Kearns at the University of Pennsylvania; First major revision sent to WINE'10; Current version sent to JAIR on April 25, 201

    On Influence, Stable Behavior, and the Most Influential Individuals in Networks: A Game-Theoretic Approach

    Get PDF
    We introduce a new approach to the study of influence in strategic settings where the action of an individual depends on that of others in a network-structured way. We propose \emph{influence games} as a \emph{game-theoretic} model of the behavior of a large but finite networked population. Influence games allow \emph{both} positive and negative \emph{influence factors}, permitting reversals in behavioral choices. We embrace \emph{pure-strategy Nash equilibrium (PSNE)}, an important solution concept in non-cooperative game theory, to formally define the \emph{stable outcomes} of an influence game and to predict potential outcomes without explicitly considering intricate dynamics. We address an important problem in network influence, the identification of the \emph{most influential individuals}, and approach it algorithmically using PSNE computation. \emph{Computationally}, we provide (a) complexity characterizations of various problems on influence games; (b) efficient algorithms for several special cases and heuristics for hard cases; and (c) approximation algorithms, with provable guarantees, for the problem of identifying the most influential individuals. \emph{Experimentally}, we evaluate our approach using both synthetic influence games as well as several real-world settings of general interest, each corresponding to a separate branch of the U.S. Government. \emph{Mathematically,} we connect influence games to important game-theoretic models: \emph{potential and polymatrix games}.Comment: Accepted to AI Journal, subject to addressing the reviewers' points (which are addressed in this version). An earlier version of the article appeared in AAAI-1
    • …
    corecore